The compound you described, **1-[(2-chlorophenyl)methyl]-N-[3-(N-ethyl-3-methylanilino)propyl]-5-oxo-2-pyrrolidinecarboxamide**, is a complex organic molecule with a long and descriptive chemical name. It's important to understand that this is **not a commonly known compound** and there's no readily available information on its specific properties or importance.
However, based on its structure, it likely belongs to the class of **amide derivatives** and contains features like:
* **Aromatic ring:** The presence of a 2-chlorophenyl group indicates an aromatic ring structure, which can contribute to pharmacological activity.
* **Amide linkage:** The amide group (CONH) is a key functional group in many pharmaceuticals and is often involved in drug-target interactions.
* **Cyclic structure:** The pyrrolidine ring is a five-membered cyclic structure commonly found in bioactive molecules.
**Without more information about this specific compound, it's impossible to definitively state its research significance.** It's possible that this molecule was synthesized as part of a research project exploring new drug candidates for a specific therapeutic area.
**To understand its importance, you would need to:**
* **Identify the research context:** Was it synthesized as part of a specific research project? What was the research goal?
* **Determine its biological activity:** Does it exhibit any pharmacological activity? If so, what is the mechanism of action?
* **Explore its potential applications:** Could it be used as a drug candidate or research tool?
**To learn more about this specific compound, you should:**
* **Consult the original research publication:** If the compound was synthesized and characterized in a research study, the publication would provide detailed information about its properties and potential applications.
* **Search scientific databases:** Databases like PubChem or SciFinder can be used to search for information on chemical structures and their properties.
**Keep in mind:** The information provided here is based on general knowledge about organic chemistry and drug discovery. For a definitive answer, you need to access specific research information related to this particular compound.
ID Source | ID |
---|---|
PubMed CID | 9550560 |
CHEMBL ID | 1367264 |
CHEBI ID | 107934 |
Synonym |
---|
smr000131579 |
MLS000521170 , |
CHEBI:107934 |
AKOS002105933 |
MLS002589135 |
HMS2467M17 |
AKOS021713261 |
CHEMBL1367264 |
1-[(2-chlorophenyl)methyl]-n-{3-[ethyl(3-methylphenyl)amino]propyl}-5-oxopyrrolidine-2-carboxamide |
1-[(2-chlorophenyl)methyl]-n-[3-(n-ethyl-3-methylanilino)propyl]-5-oxo-2-pyrrolidinecarboxamide |
Q27186280 |
SR-01000161212-1 |
sr-01000161212 |
1-[(2-chlorophenyl)methyl]-n-[3-(n-ethyl-3-methylanilino)propyl]-5-oxopyrrolidine-2-carboxamide |
Class | Description |
---|---|
proline derivative | An amino acid derivative resulting from reaction of proline at the amino group or the carboxy group, or from the replacement of any hydrogen of proline by a heteroatom. The definition normally excludes peptides containing proline residues. |
[compound class information is derived from Chemical Entities of Biological Interest (ChEBI), Hastings J, Owen G, Dekker A, Ennis M, Kale N, Muthukrishnan V, Turner S, Swainston N, Mendes P, Steinbeck C. (2016). ChEBI in 2016: Improved services and an expanding collection of metabolites. Nucleic Acids Res] |
Protein | Taxonomy | Measurement | Average (µ) | Min (ref.) | Avg (ref.) | Max (ref.) | Bioassay(s) |
---|---|---|---|---|---|---|---|
Chain A, Beta-lactamase | Escherichia coli K-12 | Potency | 17.7828 | 0.0447 | 17.8581 | 100.0000 | AID485341 |
glp-1 receptor, partial | Homo sapiens (human) | Potency | 10.0000 | 0.0184 | 6.8060 | 14.1254 | AID624417 |
GLS protein | Homo sapiens (human) | Potency | 35.4813 | 0.3548 | 7.9355 | 39.8107 | AID624170 |
TDP1 protein | Homo sapiens (human) | Potency | 19.7347 | 0.0008 | 11.3822 | 44.6684 | AID686978; AID686979 |
Microtubule-associated protein tau | Homo sapiens (human) | Potency | 35.4813 | 0.1800 | 13.5574 | 39.8107 | AID1460 |
thioredoxin glutathione reductase | Schistosoma mansoni | Potency | 89.1251 | 0.1000 | 22.9075 | 100.0000 | AID485364 |
apical membrane antigen 1, AMA1 | Plasmodium falciparum 3D7 | Potency | 8.9125 | 0.7079 | 12.1943 | 39.8107 | AID720542 |
67.9K protein | Vaccinia virus | Potency | 10.0000 | 0.0001 | 8.4406 | 100.0000 | AID720579 |
bromodomain adjacent to zinc finger domain 2B | Homo sapiens (human) | Potency | 89.1251 | 0.7079 | 36.9043 | 89.1251 | AID504333 |
euchromatic histone-lysine N-methyltransferase 2 | Homo sapiens (human) | Potency | 44.6684 | 0.0355 | 20.9770 | 89.1251 | AID504332 |
nuclear receptor ROR-gamma isoform 1 | Mus musculus (house mouse) | Potency | 1.2589 | 0.0079 | 8.2332 | 1,122.0200 | AID2551 |
neuropeptide S receptor isoform A | Homo sapiens (human) | Potency | 15.8489 | 0.0158 | 12.3113 | 615.5000 | AID1461 |
Guanine nucleotide-binding protein G | Homo sapiens (human) | Potency | 0.7943 | 1.9953 | 25.5327 | 50.1187 | AID624287 |
[prepared from compound, protein, and bioassay information from National Library of Medicine (NLM), extracted Dec-2023] |
Process | via Protein(s) | Taxonomy |
---|---|---|
negative regulation of inflammatory response to antigenic stimulus | Guanine nucleotide-binding protein G | Homo sapiens (human) |
renal water homeostasis | Guanine nucleotide-binding protein G | Homo sapiens (human) |
G protein-coupled receptor signaling pathway | Guanine nucleotide-binding protein G | Homo sapiens (human) |
regulation of insulin secretion | Guanine nucleotide-binding protein G | Homo sapiens (human) |
cellular response to glucagon stimulus | Guanine nucleotide-binding protein G | Homo sapiens (human) |
[Information is prepared from geneontology information from the June-17-2024 release] |
Process | via Protein(s) | Taxonomy |
---|---|---|
G protein activity | Guanine nucleotide-binding protein G | Homo sapiens (human) |
adenylate cyclase activator activity | Guanine nucleotide-binding protein G | Homo sapiens (human) |
[Information is prepared from geneontology information from the June-17-2024 release] |
Process | via Protein(s) | Taxonomy |
---|---|---|
plasma membrane | Guanine nucleotide-binding protein G | Homo sapiens (human) |
[Information is prepared from geneontology information from the June-17-2024 release] |
Assay ID | Title | Year | Journal | Article |
---|---|---|---|---|
AID588497 | High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Botulinum neurotoxin light chain F protease, MLPCN compound set | 2010 | Current protocols in cytometry, Oct, Volume: Chapter 13 | Microsphere-based flow cytometry protease assays for use in protease activity detection and high-throughput screening. |
AID588497 | High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Botulinum neurotoxin light chain F protease, MLPCN compound set | 2006 | Cytometry. Part A : the journal of the International Society for Analytical Cytology, May, Volume: 69, Issue:5 | Microsphere-based protease assays and screening application for lethal factor and factor Xa. |
AID588497 | High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Botulinum neurotoxin light chain F protease, MLPCN compound set | 2010 | Assay and drug development technologies, Feb, Volume: 8, Issue:1 | High-throughput multiplex flow cytometry screening for botulinum neurotoxin type a light chain protease inhibitors. |
AID588499 | High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Botulinum neurotoxin light chain A protease, MLPCN compound set | 2010 | Current protocols in cytometry, Oct, Volume: Chapter 13 | Microsphere-based flow cytometry protease assays for use in protease activity detection and high-throughput screening. |
AID588499 | High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Botulinum neurotoxin light chain A protease, MLPCN compound set | 2006 | Cytometry. Part A : the journal of the International Society for Analytical Cytology, May, Volume: 69, Issue:5 | Microsphere-based protease assays and screening application for lethal factor and factor Xa. |
AID588499 | High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Botulinum neurotoxin light chain A protease, MLPCN compound set | 2010 | Assay and drug development technologies, Feb, Volume: 8, Issue:1 | High-throughput multiplex flow cytometry screening for botulinum neurotoxin type a light chain protease inhibitors. |
AID588501 | High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Lethal Factor Protease, MLPCN compound set | 2010 | Current protocols in cytometry, Oct, Volume: Chapter 13 | Microsphere-based flow cytometry protease assays for use in protease activity detection and high-throughput screening. |
AID588501 | High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Lethal Factor Protease, MLPCN compound set | 2006 | Cytometry. Part A : the journal of the International Society for Analytical Cytology, May, Volume: 69, Issue:5 | Microsphere-based protease assays and screening application for lethal factor and factor Xa. |
AID588501 | High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Lethal Factor Protease, MLPCN compound set | 2010 | Assay and drug development technologies, Feb, Volume: 8, Issue:1 | High-throughput multiplex flow cytometry screening for botulinum neurotoxin type a light chain protease inhibitors. |
AID504810 | Antagonists of the Thyroid Stimulating Hormone Receptor: HTS campaign | 2010 | Endocrinology, Jul, Volume: 151, Issue:7 | A small molecule inverse agonist for the human thyroid-stimulating hormone receptor. |
AID651635 | Viability Counterscreen for Primary qHTS for Inhibitors of ATXN expression | |||
AID504812 | Inverse Agonists of the Thyroid Stimulating Hormone Receptor: HTS campaign | 2010 | Endocrinology, Jul, Volume: 151, Issue:7 | A small molecule inverse agonist for the human thyroid-stimulating hormone receptor. |
AID1745845 | Primary qHTS for Inhibitors of ATXN expression | |||
AID1794808 | Fluorescence-based screening to identify small molecule inhibitors of Plasmodium falciparum apicoplast DNA polymerase (Pf-apPOL). | 2014 | Journal of biomolecular screening, Jul, Volume: 19, Issue:6 | A High-Throughput Assay to Identify Inhibitors of the Apicoplast DNA Polymerase from Plasmodium falciparum. |
AID1794808 | Fluorescence-based screening to identify small molecule inhibitors of Plasmodium falciparum apicoplast DNA polymerase (Pf-apPOL). | |||
[information is prepared from bioassay data collected from National Library of Medicine (NLM), extracted Dec-2023] |
Timeframe | Studies, This Drug (%) | All Drugs % |
---|---|---|
pre-1990 | 0 (0.00) | 18.7374 |
1990's | 0 (0.00) | 18.2507 |
2000's | 1 (14.29) | 29.6817 |
2010's | 4 (57.14) | 24.3611 |
2020's | 2 (28.57) | 2.80 |
[information is prepared from research data collected from National Library of Medicine (NLM), extracted Dec-2023] |
According to the monthly volume, diversity, and competition of internet searches for this compound, as well the volume and growth of publications, there is estimated to be weak demand-to-supply ratio for research on this compound.
| This Compound (12.22) All Compounds (24.57) |
Publication Type | This drug (%) | All Drugs (%) |
---|---|---|
Trials | 0 (0.00%) | 5.53% |
Reviews | 0 (0.00%) | 6.00% |
Case Studies | 0 (0.00%) | 4.05% |
Observational | 0 (0.00%) | 0.25% |
Other | 7 (100.00%) | 84.16% |
[information is prepared from research data collected from National Library of Medicine (NLM), extracted Dec-2023] |